Anatomical distribution of prolactin-releasing peptide and its receptor suggests additional functions in the central nervous system and periphery.
نویسندگان
چکیده
A recently identified neuropeptide with PRL-releasing capabilities binds to and activates a previously known orphan G protein-coupled receptor, GPR10. We initiated a study to define the pharmacology of the peptide/receptor interaction and to identify the distribution of the peptide and its receptor in the central nervous system to elucidate sites of action of the peptide. The PRL-releasing peptide (PrRP) is a C-terminally amidated, 31-amino acid peptide derived from a 98-amino acid precursor. Radioiodinated PrRP-(1-31) binds to its receptor with high affinity (1 nM) and stimulates calcium mobilization in CHOK1 cells stably transfected with the receptor. A series of N-terminal deletions reveals that the PrRP-(12-31) amino acid is equipotent to PrRP-(1-31). Further N-terminal deletions reduce the affinity of the ligand considerably, although PrRP-(25-31) is still able to compete for binding and behaves as an agonist. The arginine residues at position 26 and 30 are critical for binding, as substitution with either lysine or citrulline reduces the affinity substantially. In situ hybridization reveals a distinct tissue distribution for both the peptide and receptor messenger RNAs. The receptor is expressed abundantly in the reticular thalamic nucleus, periventricular hypothalamus, dorsomedial hypothalamus, nucleus of the solitary tract, area postrema, anterior pituitary, and adrenal medulla. The peptide messenger RNA is expressed in the dorsomedial hypothalamus, nucleus of the solitary tract, ventrolateral reticular nucleus, and intestine. This tissue distribution suggests an alternative function of PrRP than its purported hypophysiotropic function, such as a potential role for PrRP in the central feedback control of neuroendocrine and autonomic homeostasis. Further work using selective agonists and antagonists should help define additional physiological roles of this novel mammalian neuropeptide.
منابع مشابه
Preparation and evaluation of 67Ga-DOTA-Bombesin (7-14) as a tumor scintigraphic agent
Introduction: Bombesin is a 14-aminoacid peptide isolated from frog skin. The mammalian counterparts of the frog peptide are neuromedin B (NMB) and gastrin-releasing peptide (GRP). Bombesin (BBN) is a peptide showing high affinity for the gastrin releasing peptide receptor (GRPr). Prostate, small cell lung cancer, breast, gastric, and colon cancers are known to over...
متن کاملP75: Expression of GDNF Genes in the Cerebellum of Rat Neonate Born to Mother with Diabetes
Diabetes Mellitus as a common metabolic disorder in women of reproductive age is rising throughout the globe. Diabetes in pregnancy has various adverse outcomes on different organs development including the central nervous system (CNS) and it can cause learning deficits, behavioral problems and motor dysfunctions in the offspring. The cerebellum is a part of brain that coordinates voluntary mov...
متن کاملSRL-coated PAMAM dendrimer nano-carrier for targeted gene delivery to the glioma cells and competitive inhibition by lactoferrin
Glioma, as a primary tumor of central nervous system, is the main cause of death in patients with brain cancer. Therefore, development of an efficient strategy for treatment of glioma is worthy. The aim of the current study was to develop a SRL peptide-coated dendrimer as a novel dual gene delivery system for targeting the LRP receptor, an up-regulated gene in both BBB and glioma cells. To perf...
متن کاملPhysiological Roles of GPR10 and PrRP Signaling
Prolactin-releasing peptide (PrRP) was first isolated from bovine hypothalamus, and was found to act as an endogenous ligand at the G-protein-coupled receptor 10 (GPR10 or hGR3). Although originally named as it can affect the secretion of prolactin from anterior pituitary cells, the potential functions for this peptide have been greatly expanded over the past decade. Anatomical, pharmacological...
متن کاملSRL-coated PAMAM dendrimer nano-carrier for targeted gene delivery to the glioma cells and competitive inhibition by lactoferrin
Glioma, as a primary tumor of central nervous system, is the main cause of death in patients with brain cancer. Therefore, development of an efficient strategy for treatment of glioma is worthy. The aim of the current study was to develop a SRL peptide-coated dendrimer as a novel dual gene delivery system for targeting the LRP receptor, an up-regulated gene in both BBB and glioma cells. To perf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Endocrinology
دوره 140 12 شماره
صفحات -
تاریخ انتشار 1999